首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9527篇
  免费   1090篇
  国内免费   536篇
化学   8142篇
晶体学   15篇
力学   40篇
综合类   5篇
数学   26篇
物理学   2925篇
  2023年   114篇
  2022年   164篇
  2021年   250篇
  2020年   399篇
  2019年   287篇
  2018年   270篇
  2017年   222篇
  2016年   407篇
  2015年   377篇
  2014年   490篇
  2013年   712篇
  2012年   459篇
  2011年   548篇
  2010年   413篇
  2009年   504篇
  2008年   470篇
  2007年   522篇
  2006年   458篇
  2005年   392篇
  2004年   347篇
  2003年   349篇
  2002年   165篇
  2001年   143篇
  2000年   139篇
  1999年   116篇
  1998年   114篇
  1997年   88篇
  1996年   93篇
  1995年   116篇
  1994年   58篇
  1993年   54篇
  1992年   43篇
  1991年   41篇
  1990年   30篇
  1988年   24篇
  1987年   25篇
  1985年   102篇
  1984年   117篇
  1983年   106篇
  1982年   149篇
  1981年   113篇
  1980年   97篇
  1979年   100篇
  1978年   106篇
  1977年   144篇
  1976年   118篇
  1975年   129篇
  1974年   164篇
  1973年   131篇
  1972年   82篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
The stabilization of high oxidation state nanoparticles by N‐heterocyclic carbenes is reported. Such nanoparticles represent an important subset in the field of nanoparticles, with different and more challenging requirements for suitable ligands compared to elemental metal nanoparticles. N‐Heterocyclic carbene coated NaYF4:Yb,Tm upconversion nanoparticles were synthesized by a ligand‐exchange reaction from a well‐defined precursor. This new photoactive material was characterized in detail and employed in the activation of photoresponsive molecules by low‐intensity near‐infrared light (λ =980 nm).  相似文献   
82.
Protein‐templated reactions enable the target‐guided formation of protein ligands from reactive fragments, ideally with no background reaction. Herein, we investigate the templated formation of amides. A nucleophilic fragment that binds to the coagulation factor Xa was incubated with the protein and thirteen differentially activated dipeptides. The protein induced a non‐catalytic templated reaction for the phenyl and trifluoroethyl esters; the latter was shown to be a completely background‐free reaction. Starting from two fragments with millimolar affinity, a 29 nm superadditive inhibitor of factor Xa was obtained. The fragment ligation reaction was detected with high sensitivity by an enzyme activity assay and by mass spectrometry. The reaction progress and autoinhibition of the templated reaction by the formed ligation product were determined, and the structure of the protein–inhibitor complex was elucidated.  相似文献   
83.
The thermal reduction of N2O by CO mediated by the metal‐free cluster cations [Si2Ox].+ (x =2–5) has been examined in the gas phase using Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometry in conjunction with quantum chemical calculations. Three successive oxidation/reduction steps occur starting from [Si2O2].+ and N2O to form eventually [Si2O5].+; the latter as well as the intermediate oxide cluster ions react sequentially with CO molecules to regenerate [Si2O2].+. Thus, full catalytic cycles occur at ambient conditions in the gas phase. Mechanistic aspects of these sequential redox processes have been addressed to reveal the electronic origins of these unparalleled reactions.  相似文献   
84.
Diboration of unsaturated organic compounds is an extremely useful reaction in synthetic chemistry. Herein, we report the first diboration of a nitrile by an electron‐rich diborane, mediated by an electrophilic borane. The reaction is metal‐free, and all of the reagents are readily available.  相似文献   
85.
We report a formal [4+2] cycloaddition reaction of styrenes under visible-light catalysis. Two styrene molecules with different electronic or steric properties were found to react with each other in good yield and excellent chemo- and regioselectivity. This reaction provides direct access to polysubstituted tetralin scaffolds from readily available styrenes. Sophisticated tricyclic and tetracyclic tetralin analogues were prepared in high yield and up to 20/1 diasteroselectivity from cyclic substrates.  相似文献   
86.
Corona[5]arenes, a novel type of macrocyclic compound that is composed of alternating heteroatoms and para-arylenes, were synthesized efficiently by two distinct methods. In a macrocycle-to-macrocycle transformation approach, S6-corona[3]arene[3]tetrazine underwent sequential SNAr reactions with HS-C6H4-X-C6H4-SH (X=S, CH2, CMe2, SO2, and O) to produce the corresponding corona[3]arene[2]tetrazines. Different corona[3]arene[2]tetrazine compounds were also constructed in a straightforward manner by a one-pot three-component reaction of HS-C6H4-X-C6H4-SH (X=S, CH2, CMe2, SO2, and O) with diethyl 2,5-dimercaptoterephthalate and 2 equiv of 3,6-dichlorotetrazine under very mild conditions. All corona[5]arenes adopted 1,2,4-alternate conformational structures in the crystalline state yielding similar nearly regular pentagonal cavities. Both the cavity size and the electronic property of the acquired macrocycles were fine-tuned by the nature of the bridging element X.  相似文献   
87.
Aprotic sodium–O2 batteries require the reversible formation/dissolution of sodium superoxide (NaO2) on cycling. Poor cycle life has been associated with parasitic chemistry caused by the reactivity of electrolyte and electrode with NaO2, a strong nucleophile and base. Its reactivity can, however, not consistently explain the side reactions and irreversibility. Herein we show that singlet oxygen (1O2) forms at all stages of cycling and that it is a main driver for parasitic chemistry. It was detected in‐ and ex‐situ via a 1O2 trap that selectively and rapidly forms a stable adduct with 1O2. The 1O2 formation mechanism involves proton‐mediated superoxide disproportionation on discharge, rest, and charge below ca. 3.3 V, and direct electrochemical 1O2 evolution above ca. 3.3 V. Trace water, which is needed for high capacities also drives parasitic chemistry. Controlling the highly reactive singlet oxygen is thus crucial for achieving highly reversible cell operation.  相似文献   
88.
《Comptes Rendus Chimie》2017,20(4):370-376
In this paper, an azo-containing Schiff base complex of manganese [Mn2+-azo ligand@APTES-SiO2@Fe3O4] immobilized on chemically modified Fe3O4 nanoparticles has been used as a magnetically retrievable catalyst for the alcoholysis of different epoxides to their corresponding alkoxy alcohols with methanol, ethanol and n-propanol. The newly magnetic nanoparticles (MNPs) were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and vibrating sample magnetometry (VSM).  相似文献   
89.
工业发展与人类活动导致大气中CO2浓度逐年升高, 引发一系列生态环境问题. 将CO2光催化转化为高附加值化学物质不仅有利于缓解环境压力,也可以带来额外经济价值. 然而, 由于多电子利用效率低和C―C偶联动力学缓慢, 光还原CO2制多碳产品面临产率低和选择性差等挑战. 光催化剂活性位点调控能够有效解决上述问题. 我们综述了近几年用于光还原CO2催化剂表面活性位点设计的研究进展, 主要包括缺陷位点、 金属位点以及掺杂位点等, 从活性位点的角度为光还原CO2催化剂设计提供新视角, 并对开发高效光催化剂具有启发意义.  相似文献   
90.
Industrialization undoubtedly boosts economic development and improves the standard of living; however, it also leads to some serious problems, including the energy crisis, environmental pollution, and global warming. These problems are associated with or caused by the high carbon dioxide (CO2) and sulfur dioxide (SO2) emissions from the burning of fossil fuels such as coal, oil, and gas. Photocatalysis is considered one of the most promising technologies for eliminating these problems because of the possibility of converting CO2 into hydrocarbon fuels and other valuable chemicals using solar energy, hydrogen (H2) production from water (H2O) electrolysis, and degradation of pollutants. Among the various photocatalysts, silicon carbide (SiC) has great potential in the fields of photocatalysis, photoelectrocatalysis, and electrocatalysis because of its good electrical properties and photoelectrochemistry. This review is divided into six sections: introduction, fundamentals of nanostructured SiC, synthesis methods for obtaining nanostructured SiC photocatalysts, strategies for improving the activity of nanostructured SiC photocatalysts, applications of nanostructured SiC photocatalysts, and conclusions and prospects. The fundamentals of nanostructured SiC include its physicochemical characteristics. It possesses a range of unique physical properties, such as extreme hardness, high mechanical stability at high temperatures, a low thermal expansion coefficient, wide bandgap, and superior thermal conductivity. It also possesses exceptional chemical characteristics, such as high oxidation and corrosion resistance. The synthesis methods for obtaining nanostructured SiC have been systematically summarized as follows: Template growth, sol-gel, organic precursor pyrolysis, solvothermal synthesis, arc discharge, carbon thermal reduction, and electrospinning. These synthesis methods require high temperatures, and the reaction mechanism involves SiC formation via the reaction between carbon and silicon oxide. In the section of the review involving the strategies for improving the activity of nanostructured SiC photocatalysts, seven strategies are discussed, viz., element doping, construction of Z-scheme (or S-scheme) systems, supported co-catalysts, visible photosensitization, construction of semiconductor heterojunctions, supported carbon materials, and construction of nanostructures. All of these strategies, except element doping and visible photosensitization, concentrate on enhancing the separation of holes and electrons, while suppressing their recombination, thus improving the photocatalytic performance of the nanostructured SiC photocatalysts. Regarding the element doping and visible photosensitization strategies, element doping can narrow the bandgap of SiC, which generates more holes and electrons to improve photocatalytic activity. On the other hand, the principle of visible photosensitization is that photo-induced electrons move from photosensitizers to the conduction band of SiC to participate in the reaction, thus enhancing the photocatalytic performance. In the section on the applications of nanostructured SiC, photocatalytic H2 production, pollutant degradation, CO2 reduction, photoelectrocatalytic, and electrocatalytic applications will be discussed. The mechanism of a photocatalytic reaction requires the SiC photocatalyst to produce photo-induced electrons and holes during irradiation, which participate in the photocatalytic reaction. For example, photo-induced electrons can transform protons into H2, as well as CO2 into methane, methanol, or formic acid. Furthermore, photo-induced holes can convert organic waste into H2O and CO2. For photoelectrocatalytic and electrocatalytic applications, SiC is used as a catalyst under high temperatures and highly acidic or basic environments because of its remarkable physicochemical characteristics, including low thermal expansion, superior thermal conductivity, and high oxidation and corrosion resistance. The last section of the review will reveal the major obstacles impeding the industrial application of nanostructured SiC photocatalysts, such as insufficient visible absorption, slow reaction kinetics, and hard fabrication, as well as provide some ideas on how to overcome these obstacles.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号